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Contemporary urban planning aims to achieve the goals 
of sustainable development, among which the main goal 
is the mitigation of risks from natural disasters. However, 
rapid urbanization is pressurizing urban planning, which 
makes it difficult to implement the principles of sustain-
able development in urban planning. Many human set-
tlements have developed in territories exposed to one or 
multiple natural hazards. Earthquakes are considered to 
be the most devastating natural phenomena especially 
when they happen in densely populated and vulnerable 
urban environments.

The research topic of this book, which is based on the 
author’s doctoral dissertation, is the assessment of seis-
mic risk in urban environments as a basis for sustainable 
urban development. The seismic safety of the built envi-
ronment relies on the buildings designed and construct-
ed according to valid seismic design codes. However, 
the urban tissue of cities also consists of buildings built 
in different periods, before and after the introduction of 
seismic design codes, and as a result of different types of 
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reconstructions and adaptations, it has a dynamic charac-
ter. Buildings constructed before the introduction of seis-
mic design codes have unknown levels of seismic safety, 
which implies that urban environments are vulnerable to 
seismic risk.

Also, in this book, through a review of the urban planning 
practices in some earthquake-prone countries, an intro-
ductory analysis was done to define the existing role of ur-
ban planning in the mitigation of seismic risk.

A pilot study in the Municipality of Karposh in Skopje was 
selected with the purpose of defining the level of seismic 
risk and identifying the urban parameters that have an 
influence on the seismic risk. Skopje is a territory with 
relatively high seismicity. The earthquake in 1963 was the 
greatest natural catastrophe in the history of the city and, 
at the same time, was the beginning of the construction of 
modern Skopje.

For the seismic risk assessment of the pilot study in the 
first place, the components of risk, hazard, exposure, and 
vulnerability, were defined. The seismic hazard was de-
fined using both deterministic and probabilistic approach-
es. Seismic hazard information was based on ESHM20 
(Danciu et al., 2021). In the deterministic approach, two 
scenario earthquakes were selected: a Mw 6.6 earthquake 
at 10 km and an earthquake with Mw 7.1 at a 100 km radi-
us distance from the pilot study area. Within the probabil-
istic seismic hazard analysis approaches, the intensity of 
ground shaking was defined for two return periods, 95 and 
475 years. The local site conditions of the pilot study area 
were defined in accordance with data from the soil study 



xxvPreface

carried out by IZIIS (Dojcinovski et al., 2013) and regional 
site parameters available in ESRM20 (Crowley et al., 2021).  

The exposure model was prepared for two urban scenari-
os: the existing (scenario 1) and the planned site (scenario 
2). The existing site building stock information was based 
on previous studies carried out by IZIIS (Necevska-Cve-
tanovska et al., 2013; Apostolska et al., 2018). The planned 
site was based on the Detailed Urban Plan (Tajfa Plan, 
2015). Taxonomy consisting of attributes such as con-
struction period (seismic design code level), material and 
type of structural systems, the height of the building, plan 
shape of the building, and position of the building in the 
urban block was defined for each entity from the exposure 
models of scenarios 1 and 2. 

According to the construction period, the building stock 
was classified into three periods: prior to 1964 (no seis-
mic design codes were applied), between 1964 and 1981 
(designed according to the first seismic design code), and 
after 1981 (designed according to the current seismic de-
sign code). Regarding the material and type of structur-
al systems, there are buildings with reinforced concrete 
moment frame structures, reinforced concrete infilled 
frame structures, reinforced concrete dual frame-wall 
system structures, confined masonry structures, and un-
reinforced masonry structures. In both scenarios, there 
are buildings with mixed structural systems, which are 
the result of structural interventions made on existing 
buildings, such as expanding the floor area and adding 
stories. The structural interventions in some buildings 
were made by using expansion joints, while in others, the 
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structural interventions were applied directly to the orig-
inal structure. 

The vulnerability model was formulated by selecting ex-
isting vulnerability curves from the ESRM20 (Crowley et 
al., 2021) in accordance with the taxonomy of the entities 
present in the exposure models for scenarios 1 and 2. 	 

The seismic risk assessment for the two urban scenarios 
of the pilot study was done by using the program Open 
Quake Engine 3.13 (GEM, 2022). Based on the approach of 
analyzing seismic hazard, deterministic and probabilistic, 
the Scenario earthquake and Classical Probabilistic calcu-
lators were used. The results obtained from seismic risk 
assessment were presented for different damage levels in 
correlation with taxonomy, construction period, and se-
lected urban planning parameters. Also, damage distribu-
tion maps were generated in QGIS 3.14 (QGIS team, 2020). 
The probability of economic and life losses obtained from 
the Classical Probabilistic calculator was analyzed as well. 
As was expected, in general terms, the greatest damage 
appears at buildings with masonry structures constructed 
before the introduction of the first seismic design codes 
of 1964, and this type of structure is mostly present in the 
exposure model of urban scenario 1.  

Based on the conducted research, the following general con-
clusions can be made:

•	 In urban planning, seismic hazards are taken into ac-
count, but seismic risks are not considered.

•	 Some urban planning parameters, such as the height 
of the building, position in the urban block, plan 
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shape, and occupancy type, create a base for the for-
mulation of irregular architectural configurations. If 
the seismic risk is not considered the noncritical use 
of these urban parameters can give way to increased 
damage when an earthquake hits. 

•	 In urban plans aiming at the existing urban settle-
ments, urban parameters that control the growth of 
the built environment do not clearly define the status 
of the existing buildings from the construction aspect. 
Whether the increased floor area means demolish-
ing the existing and rebuilding a new building, or the 
existing building remains as it is and additional floor 
area and stories are added to is not stated in the urban 
plan. Allowing the addition of floor areas and stories 
to existing buildings creates mixed structures with un-
known levels of seismic safety.

•	 In the existing National practice and regulations of 
urban planning, there is no methodology that treats 
seismic risk in existing urban districts. 

•	 In this research, based on the doctoral dissertation of 
the author, in accordance with the newest research in 
the world, a methodology for seismic risk assessment 
and defining the role and importance of selected ur-
ban parameters in the structural response of buildings 
was successfully implemented on the pilot study, the 
urban settlement in the Municipality of Karposh.

The methodology for seismic risk assessment and defining 
the role of selected urban parameters in the structural re-
sponse of buildings conducted in the doctoral dissertation 
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can be used as an instrument for urban planners in the 
preparation of urban plans and at the same time support 
the city authorities in the processes of decision mak-
ing and building seismically safe and sustainable urban 
environments.

Kefajet Edip



Introduction
Although, in the last few decades, disaster prevention 
has become part of the spatial planning approaches, the 
integration of risk assessment into the process of spatial 
planning is not completely realized yet. The importance of 
spatial planning in reducing vulnerability of cities to dif-
ferent types of hazards, including seismic hazard, is high-
ly emphasized.  

In urban settlements where there is high density of pop-
ulation, seismically vulnerable buildings and infrastruc-
ture, an earthquake can cause a disaster. Seismically ac-
tive regions are home to many cities, and the building 
stock of these cities consists of buildings constructed in 
different periods, before and after the adoption of the 
seismic design codes, which can cause an increase in seis-
mic risk. In some of the European countries exposed to 
earthquakes, such as Greece, Italy, Poland, and Spain, the 
urban planning practice refers to the hazard factor while 

Seismic Risk Assessment 
as a Basis for Sustainable 

Urban Development 

CHAPTER 1


